Fabrication of Nanostructures Consisting of Composite Nanoparticles by Open-Air PLD

Author:

Dikovska Anna Og1ORCID,Karashanova Daniela2ORCID,Atanasova Genoveva3ORCID,Avdeev Georgi4ORCID,Atanasov Petar1,Nedyalkov Nikolay N.1

Affiliation:

1. Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, 1784 Sofia, Bulgaria

2. Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 109, 1113 Sofia, Bulgaria

3. Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 11, 1113 Sofia, Bulgaria

4. Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 11, 1113 Sofia, Bulgaria

Abstract

We present a two-step physical method for the fabrication of composite nanoparticle-based nanostructures. The proposed method is based on the pulsed laser deposition (PLD) technique performed sequentially in vacuum and in air. As a first step, thin-alloyed films of iron with noble metal were deposited by PLD in vacuum. The films were prepared by ablation of a mosaic target formed by equal iron and gold sectors. As a second step, the as-prepared alloyed films were ablated in air at atmospheric pressure as the laser beam scanned their surface. Two sets of experiments were performed in the second step, namely, by applying nanosecond (ns) and picosecond (ps) laser pulses for ablation. The structure, microstructure, morphology, and optical properties of the samples obtained were studied with respect to the laser ablation regime applied. The implementation of the ablation process in open air resulted in the formation of nanoparticle and/or nanoparticle aggregates in the plasma plume regardless of the ablation regime applied. These nanoparticles and/or nanoaggregates deposited on the substrate formed a complex porous structure. It was found that ablating FeAu films in air by ns pulses resulted in the fabrication of alloyed nanoparticles, while ablation by ps laser pulses results in separation of the metals in the alloy and further oxidation of Fe. In the latter case, the as-deposited structures also contain core–shell type nanoparticles, with the shell consisting of Fe-oxide phase. The obtained structures, regardless of the ablation regime applied, demonstrate a red-shifted plasmon resonance with respect to the plasmon resonance of pure Au nanoparticles.

Funder

Bulgarian National Science Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3