Author:
Li Yingchang,Li Mingyang,Wang Yuehui
Abstract
As the largest and most important natural terrestrial ecosystem, forest plays a crucial role in reducing the concentrations of greenhouse gases in the atmosphere, mitigating global warming, maintaining the global ecological balance, and promoting global biological evolution and community succession. The accurate and rapid assessment of forest biomass is highly significant for estimating the regional carbon budget and monitoring forest change. In this study, Landsat images and China’s National Forest Continuous Inventory data of 1999, 2004, 2009, and 2014 were used to establish extreme gradient boosting (XGBoost) models for forest aboveground biomass (AGB) estimation based on forest type in the Xiangjiang River Basin, Hunan Province, China. Kriging interpolation of the AGB residuals was used to correct the error of AGB estimation. Then, a new XGBoost model was established using the final corrected AGB maps and climate data to estimate the AGB under different climate scenarios during the 2050s and 2070s. The results indicated that AGB estimation using the XGBoost model with correction via Kriging interpolation of the AGB residuals can significantly improve the accuracy of AGB estimation. The total AGB of the study area increased over time from 1999 to 2014, indicating that the forest quality improved in the study area. Under the different climate scenarios, the total AGB during the 2050s and 2070s was predicted to decline continuously with increasing of greenhouse gas emissions, indicating that greenhouse gas emissions have a negative impact on forest growth. The results of this study can provide data support for evaluating the ecological function and value of forest ecosystems, and for formulating reasonable forest management measures to mitigate the effects of climate change.
Funder
National Natural Science Foundation of China
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Reference129 articles.
1. Climate Change 2013 The Physical Science Basis, Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2013.
2. Climate Change 2022 Mitigation of Climate Change, Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 2022.
3. A Global Overview of Drought and Heat-induced Tree Mortality Reveals Emerging Climate Change Risks for Forests;Allen;For. Ecol. Manag.,2010
4. Plant Ecophysiology and Forest Response to Global Change;Buchmann;Tree Physiol.,2002
5. A framework for complex climate change risk assessment;Simpson;One Earth,2021
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献