Forest Aboveground Biomass Estimation and Response to Climate Change Based on Remote Sensing Data

Author:

Li Yingchang,Li Mingyang,Wang Yuehui

Abstract

As the largest and most important natural terrestrial ecosystem, forest plays a crucial role in reducing the concentrations of greenhouse gases in the atmosphere, mitigating global warming, maintaining the global ecological balance, and promoting global biological evolution and community succession. The accurate and rapid assessment of forest biomass is highly significant for estimating the regional carbon budget and monitoring forest change. In this study, Landsat images and China’s National Forest Continuous Inventory data of 1999, 2004, 2009, and 2014 were used to establish extreme gradient boosting (XGBoost) models for forest aboveground biomass (AGB) estimation based on forest type in the Xiangjiang River Basin, Hunan Province, China. Kriging interpolation of the AGB residuals was used to correct the error of AGB estimation. Then, a new XGBoost model was established using the final corrected AGB maps and climate data to estimate the AGB under different climate scenarios during the 2050s and 2070s. The results indicated that AGB estimation using the XGBoost model with correction via Kriging interpolation of the AGB residuals can significantly improve the accuracy of AGB estimation. The total AGB of the study area increased over time from 1999 to 2014, indicating that the forest quality improved in the study area. Under the different climate scenarios, the total AGB during the 2050s and 2070s was predicted to decline continuously with increasing of greenhouse gas emissions, indicating that greenhouse gas emissions have a negative impact on forest growth. The results of this study can provide data support for evaluating the ecological function and value of forest ecosystems, and for formulating reasonable forest management measures to mitigate the effects of climate change.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference129 articles.

1. Climate Change 2013 The Physical Science Basis, Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2013.

2. Climate Change 2022 Mitigation of Climate Change, Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 2022.

3. A Global Overview of Drought and Heat-induced Tree Mortality Reveals Emerging Climate Change Risks for Forests;Allen;For. Ecol. Manag.,2010

4. Plant Ecophysiology and Forest Response to Global Change;Buchmann;Tree Physiol.,2002

5. A framework for complex climate change risk assessment;Simpson;One Earth,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3