Aboveground Forest Biomass Estimation Using Tent Mapping Atom Search Optimized Backpropagation Neural Network with Landsat 8 and Sentinel-1A Data

Author:

Chen Zhao12,Sun Zhibin12,Zhang Huaiqing3ORCID,Zhang Huacong3ORCID,Qiu Hanqing3ORCID

Affiliation:

1. School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China

2. Engineering Research Center for Forestry–Oriented Intelligent Information Processing, National Forestry and Grassland Administration, Beijing 100083, China

3. Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China

Abstract

Accurate forest biomass estimation serves as the foundation of forest management and holds critical significance for a comprehensive understanding of forest carbon storage and balance. This study aimed to integrate Landsat 8 OLI and Sentinel-1A SAR satellite image data and selected a portion of the Shanxia Experimental Forest in Jiangxi Province as the study area to establish a biomass estimation model by screening influencing factors. Firstly, we extracted spectral information, vegetation indices, principal component features, and texture features within 3 × 3-pixel neighborhoods from Landsat 8 OLI. Moreover, we incorporated Sentinel-1’s VV (vertical transmit–vertical receive) and VH (vertical transmit–horizontal receive) polarizations. We proposed an ensemble AGB (aboveground biomass) model based on a neural network. In addition to the neural network model, namely the tent mapping atom search optimized BP neural network (Tent_ASO_BP) model, partial least squares regression (PLSR), support vector machine (SVR), and random forest (RF) regression prediction techniques were also employed to establish the relationship between multisource remote sensing data and forest biomass. Optical variables (Landsat 8 OLI), SAR variables (Sentinel-1A), and their combinations were input into the four prediction models. The results indicate that Tent_ ASO_ BP model can better estimate forest biomass. Compared to pure optical or single microwave data, the Tent_ASO_BP model with the optimal combination of optical and microwave input features achieved the highest accuracy. Its R2 was 0.74, root mean square error (RMSE) was 11.54 Mg/ha, and mean absolute error (MAE) was 9.06 Mg/ha. Following this, the RF model (R2 = 0.54, RMSE = 21.33 Mg/ha, MAE = 17.35 Mg/ha), SVR (R2 = 0.52, RMSE = 17.66 Mg/ha, MAE = 15.11 Mg/ha), and PLSR (R2 = 0.50, RMSE = 16.52 Mg/ha, MAE = 12.15 Mg/ha) models were employed. In conclusion, the BP neural network model improved by tent mapping atom search optimization algorithm significantly enhanced the accuracy of AGB estimation in biomass studies. This will provide a new avenue for large-scale forest resource surveys.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3