Forest Aboveground Biomass Estimation Using Machine Learning Ensembles: Active Learning Strategies for Model Transfer and Field Sampling Reduction

Author:

Amitrano Donato1,Giacco Giovanni23ORCID,Marrone Stefano2ORCID,Pascarella Antonio Elia2ORCID,Rigiroli Mattia34,Sansone Carlo2ORCID

Affiliation:

1. Italian Aerospace Research Centre, Via Maiorise snc, 81043 Capua, Italy

2. Department of Electrical Engineering and Information Technology, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy

3. Latitudo 40 srl, Via Emanuele Gianturco 31C, 80142 Naples, Italy

4. Department of Civil, Chemical and Environmental Engineering, University of Genova, Via Montallegro 1, 16145 Genova, Italy

Abstract

Biomass is a crucial indicator of the carbon sequestration capacity of a vegetation ecosystem. Its dynamic is of interest because it impacts on the carbon cycle, which plays an important role in the global climate and its changes. This work presents a novel technique, able to transfer a calibrated regression model between different areas by exploiting an active learning methodology and using Shannon’s entropy as a discriminator for sample selection. Model calibration is performed based on a reference area for which an extended ground truth is available and implemented via regression bootstrap. Then, re-calibration samples for model transfer are selected through active learning, allowing for choosing a limited number of points to be investigated for training data collection. Different sampling strategies and regression techniques have been tested to demonstrate that a significant reduction in the number of calibration samples does not affect the estimation performance. The proposed workflow has been tested on a dataset concerning Finnish forests. Experimental results show that the joint exploitation of regression ensembles and active learning dramatically reduces the amount of field sampling, providing aboveground biomass estimates comparable to those obtained using literature techniques, which need extended training sets to build reliable predictions.

Funder

Italian Aerospace Research Centre

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3