Brake Instability Dynamic Model and Active Control Strategy for a Multiunit Articulated Rubber-Wheel Autonomous Rail Rapid Transit System

Author:

Li Tao,Zhang ShuoORCID,Xiao Gang,Wang Minqi,Zhong Hanwen,Feng Jianghua

Abstract

Due to the particularity of the structure, the dynamic properties of multiunit articulated rubber-wheel autonomous rail rapid transit system are very complex, which increases the difficulty of studying its braking stability. In this paper, a dynamic analysis model for the emergency braking of a multiunit articulated rubber-wheel autonomous rail rapid transit system is established by introducing the axle load transfer, suspension deformation compatibility equation, articulation force relationship equations, etc. Based on an in-depth analysis of the risks of the lateral swing instability and their formation mechanisms, an active control strategy for the multiunit articulated rubber-wheel autonomous rail rapid transit system under emergency braking conditions is innovatively proposed to ensure the stability of the vehicle, with the shortest braking distance as the optimization goal. Through simulation and experimentation, the established dynamic model is confirmed to approach the real vehicle well, and the feasibility of the active control strategy is proved.

Funder

Natural Science Foundation of Hunan Province

National Natural Science Foundation of China

Open foundation of Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University

Virtual Reality Key Application Technology Research (Revealed and Commanded) Project of Jiangxi Province

Postgraduate Research and Innovation Project of Hunan University of Technology

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3