Vertical-Longitudinal Coupling Effect Investigation and System Optimization for a Suspension-In-Wheel-Motor System in Electric Vehicle Applications

Author:

Zhao Ze1,Zhang Lei1ORCID,Wu Jianyang2,Gu Liang1,Li Shaohua3

Affiliation:

1. National Engineering Research Center for Electric Vehicles, Beijing Institute of Technology, Beijing 100081, China

2. Beijing Institute of Space Launch Technology, Beijing 100076, China

3. State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang 050043, China

Abstract

In-wheel-motor-drive electric vehicles have attracted enormous attention due to its potentials of improving vehicle performance and safety. Road surface roughness results in forced vibration of in-wheel-motor (IWM) and thus aggravates the unbalanced electric magnetic force (UEMF) between its rotor and stator. This can further compromise vertical and longitudinal vehicle dynamics. This paper presents a comprehensive study to reveal the coupled vertical–longitudinal effect on suspension-in-wheel-motor systems (SIWMS) along with a viable optimization procedure to improve ride comfort and handling performance. First, a UEMF model is established to analyze the mechanical–electrical–magnetic coupling relationship inside an IWM. Then a road–tire–ring force (RTR) model that can capture the transient tire–road contact patch and tire belt deformation is established to accurately describe the road–tire and tire–rotor forces. The UEMF and the RTRF model are incorporated into the quarter-SIWMS model to investigate the coupled vertical–longitudinal vehicle dynamics. Through simulation studies, a comprehensive evaluation system is put forward to quantitatively assess the effects during braking maneuvers under various road conditions. The key parameters of the SIWMS are optimized via a multi-optimization method to reduce the adverse impact of UEMF. Finally, the multi-optimization method is validated in a virtual prototype which contains a high-fidelity multi-body model. The results show that the longitudinal acceleration fluctuation rate and the slip ratio signal-to-noise ratio are reduced by 5.07% and 6.13%, respectively, while the UEMF in the vertical and longitudinal directions varies from 22.2% to 34.7%, respectively, and is reduced after optimization. Thus, the negative coupling effects of UEMF are minimized while improving the ride comfort and handling performance.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic Testing of In-Wheel Motor Based Electric Vehicle in Longitudinal Direction;International Journal of Automotive and Mechanical Engineering;2023-09-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3