Dynamic Testing of In-Wheel Motor Based Electric Vehicle in Longitudinal Direction

Author:

Razak Muhammad Shukri Azizi,Ahmad Fauzi,Che Hasan Mohd Hanif,Jamaluddin Hishamuddin

Abstract

This paper presents an investigation into the performance of in-wheel motor (IWM) based electric vehicles (IWM-EV) in the longitudinal direction. The design of IWM-EV is an innovation of the conventional go-kart vehicle with slightly modifications in steering, suspension, and braking system, which then makes use three-phase permanent magnet synchronous in-wheel motor (PMSM-IWM) at both of the rear axle wheels. An extension of that is a simulation of IWM-EV vehicle using a 5-degree-of-freedom vehicle longitudinal model that has been developed by incorporating PMSM-IWM as a drive wheel located at the rear axles. Using the simulation, vehicle dynamic control in the longitudinal direction-based Proportional-Integral-Derivative (PID) controller has also been strategized. As the intention to confirm the capability of the IWM-EV, experimental studies-based real IWM-EV hardware have been conducted. Three dynamic tests that generalized from SAE standard SAE J866-199908, namely acceleration performance at the level pavement (include acceleration tests and acceleration then braking tests) and road gradient tests at constant speeds of 10, 15 and 20 km/h, were used as the testing method. The performance areas evaluated were vehicle body speed, wheel speed, distance travel experienced by the vehicle, IWMs current, drive torque as well as the battery voltage capacity used by the vehicle. The finding indicate that the simulation results and experimental data are similar with less than 5 % error. The outcomes from this study will be considered in the design optimization of a torque vectoring control in the next research study.

Publisher

Universiti Malaysia Pahang Publishing

Subject

Mechanical Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3