Evaluating Shear Strength of Light-Weight and Normal-Weight Concretes through Artificial Intelligence

Author:

Ebid Ahmed M.ORCID,Deifalla Ahmed FaroukORCID,Mahdi Hisham A.

Abstract

The strength of concrete elements under shear is a complex phenomenon, which is induced by several effective variables and governing mechanisms. Thus, each parameter’s importance depends on the values of the effective parameters and the governing mechanism. In addition, the new concrete types, including lightweight concrete and fibered concrete, add to the complexity, which is why machine learning (ML) techniques are ideal to simulate this behavior due to their ability to handle fuzzy, inaccurate, and even incomplete data. Thus, this study aims to predict the shear strength of both normal-weight and light-weight concrete beams using three well-known machine learning approaches, namely evolutionary polynomial regression (EPR), artificial neural network (ANN) and genetic programming (GP). The methodology started with collecting a dataset of about 1700 shear test results and dividing it into training and testing subsets. Then, the three considered (ML) approaches were trained using the training subset to develop three predictive models. The prediction accuracy of each developed model was evaluated using the testing subset. Finally, the accuracies of the developed models were compared with the current international design codes (ACI, EC2 & JSCE) to evaluate the success of this research in terms of enhancing the prediction accuracy. The results showed that the prediction accuracies of the developed models were 68%, 83% & 76.5% for GP, ANN & EPR, respectively, and 56%, 40% & 62% for ACI, EC2 & JSCE, in that order. Hence, the results indicated that the accuracy of the worst (ML) model is better than those of design codes, and the ANN model is the most accurate one.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3