Predictive modeling of wide-shallow RC beams shear strength considering stirrups effect using (FEM-ML) approach

Author:

Soliman Ahmed A.,Mansour Dina M.,Khalil Ayman H.,Ebid Ahmed

Abstract

AbstractThis paper presents an analysis and prediction of the shear strength of wide-shallow reinforced concrete beams, utilizing Finite Element Analysis (FEA) and machine learning techniques. The methodology involves validating a detailed Finite Element Model (FEM) against experimental results, conducting a parametric study, and developing three Machine Learning prediction equations. The FEM captures concrete and steel behaviors, including cracking and crushing for concrete and linear isotropic properties for steel reinforcement. Loading and boundary conditions are defined for accuracy and validated against 13 experimental specimens, exhibiting a maximum 8% and 12% difference in loads and deflections, respectively. A parametric study generates a dataset of 77 wide beam configurations, exploring variations in beam widths, concrete strengths, compression rebars, and shear reinforcement. This dataset is used to develop machine learning models, including “Genetic Programming (GP)”, “Evolutionary Polynomial Regression (EPR)”, and “Artificial Neural Network (ANN)”. Comparative analysis reveals GP and EPR models with over 95% correlation, while the ANN model outperforms with 99% accuracy. Sensitivity analysis underscores the significant influence of concrete strength and beam aspect ratio on shear strength. In conclusion, the study demonstrates the potential of FEA and machine learning models to predict shear strength in wide-shallow reinforced concrete beams, providing valuable insights for architectural design and engineering practices and emphasizing the role of concrete strength and beam geometry in shear behavior.

Funder

Future University in Egypt

Publisher

Springer Science and Business Media LLC

Reference33 articles.

1. Lubell, A., Sherwood, T., Bentz, E. & Collins, M. Safe shear design of large wide beams. Concr. Int. 26(1), 66–78 (2004).

2. Soliman, A. A., Mansour, D. M., Ebid, A. & Khalil, A. H. Shallow and Wide RC beams, definition, capacity and structural behavior-gap study. Open Civ. Eng. J. https://doi.org/10.2174/18741495-v17-e230725-2023-28 (2023).

3. Soliman, A. A., Mansour, D. M., Ebid, A. & Khalil, A. H. Advancing concrete design: shear capacity in wide beams with shallow depths. YMER. 12(12), 2031–2052 (2023).

4. ANSYS 23. ANSYS Inc; (2023).

5. Simulia. ABAQUS . Dassault Systèmes; (2023).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3