Forecasting Spatially-Distributed Urban Traffic Volumes via Multi-Target LSTM-Based Neural Network Regressor

Author:

Crivellari Alessandro,Beinat Euro

Abstract

Monitoring the distribution of vehicles across the city is of great importance for urban traffic control. In particular, information on the number of vehicles entering and leaving a city, or moving between urban areas, gives a valuable estimate on potential bottlenecks and congestions. The possibility of predicting such flows in advance is even more beneficial, allowing for timely traffic management strategies and targeted congestion warnings. Our work is inserted in the context of short-term forecasting, aiming to predict rapid changes and sudden variations in the traffic volume, beyond the general trend. Moreover, it concurrently targets multiple locations in the city, providing an instant prediction outcome comprising the future distribution of vehicles across several urban locations. Specifically, we propose a multi-target deep learning regressor for simultaneous predictions of traffic volumes, in multiple entry and exit points among city neighborhoods. The experiment focuses on an hourly forecasting of the amount of vehicles accessing and moving between New York City neighborhoods through the Metropolitan Transportation Authority (MTA) bridges and tunnels. By leveraging a single training process for all location points, and an instant one-step volume inference for every location at each time update, our sequential modeling approach is able to grasp rapid variations in the time series and process the collective information of all entry and exit points, whose distinct predicted values are outputted at once. The multi-target model, based on long short-term memory (LSTM) recurrent neural network layers, was tested on a real-world dataset, achieving an average prediction error of 7% and demonstrating its feasibility for short-term spatially-distributed urban traffic forecasting.

Funder

Austrian Science Fund

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3