Author:
Crivellari Alessandro,Beinat Euro
Abstract
Monitoring the distribution of vehicles across the city is of great importance for urban traffic control. In particular, information on the number of vehicles entering and leaving a city, or moving between urban areas, gives a valuable estimate on potential bottlenecks and congestions. The possibility of predicting such flows in advance is even more beneficial, allowing for timely traffic management strategies and targeted congestion warnings. Our work is inserted in the context of short-term forecasting, aiming to predict rapid changes and sudden variations in the traffic volume, beyond the general trend. Moreover, it concurrently targets multiple locations in the city, providing an instant prediction outcome comprising the future distribution of vehicles across several urban locations. Specifically, we propose a multi-target deep learning regressor for simultaneous predictions of traffic volumes, in multiple entry and exit points among city neighborhoods. The experiment focuses on an hourly forecasting of the amount of vehicles accessing and moving between New York City neighborhoods through the Metropolitan Transportation Authority (MTA) bridges and tunnels. By leveraging a single training process for all location points, and an instant one-step volume inference for every location at each time update, our sequential modeling approach is able to grasp rapid variations in the time series and process the collective information of all entry and exit points, whose distinct predicted values are outputted at once. The multi-target model, based on long short-term memory (LSTM) recurrent neural network layers, was tested on a real-world dataset, achieving an average prediction error of 7% and demonstrating its feasibility for short-term spatially-distributed urban traffic forecasting.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献