Attention-Based Gated Recurrent Graph Convolutional Network for Short-Term Traffic Flow Forecasting

Author:

Lou Ping1ORCID,Wu Zihao1ORCID,Hu Jiwei1ORCID,Liu Quan1,Wei Qin1

Affiliation:

1. School of Information Engineering, Wuhan University of Technology, Wuhan, Huber 430070, China

Abstract

Traffic flow prediction is the basis of dynamic strategies and applications of intelligent transportation systems (ITS). Accurate traffic flow prediction is of great practical significance in alleviating road congestion and reducing urban road traffic safety hazards. It is challenging since the traffic flow has highly non-linear and complex patterns due to external factors such as time and space. Due to the high stochasticity and uncertainty of traffic flow, the difficulty of traffic flow prediction increases gradually with increasing time steps. The prediction performance of most existing short-term traffic flow prediction methods deteriorates rapidly for longer time steps. In addition, different methods are compared on the same time-granularity dataset, leaving the adaptability and robustness of these methods undervalidated. To address the above challenges, a new traffic forecasting method, named Attention-Based Gated Recurrent Graph Convolutional Network (AGRGCN) is presented for short-term traffic flow prediction. The method can extract spatialtemporal dependencies in traffic flow. In addition, an attention mechanism, which can adaptively capture traffic data relationships at different time steps, is introduced to alleviate the problem of faster deterioration of model prediction performance for longer time steps. Using a road network distance-based graph enables the method better to capture the topological information in traffic flow data. Experiments were conducted on two traffic datasets with different time granularity to predict traffic flow in highway and urban contexts. The experimental results show that our model has certain advantages.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3