Hybrid short-term traffic flow prediction based on the effect of non-linear sequence noise

Author:

Cheng Gang1,Liu Yadong2

Affiliation:

1. College of Engineering, Tibet University, Lhasa 850000, China

2. College of Information Science and Technology, Tibet University, Lhasa 850000, China

Abstract

<abstract> <p>Short-term traffic flow prediction is crucial for intelligent transport systems and mitigating traffic congestion. Therefore, precise prediction of real-time traffic conditions is becoming more important. Currently, the existing prediction models lack the ability to effectively extract spatio-temporal characteristics and fail to adequately account for the impact of non-linear noise. To address these issues, the study proposes a hybrid short-term traffic flow prediction model based on spatio-temporal characteristics. First, the method decomposes the initial spatio-temporal traffic sequence data into multiple modal components using the complementary ensemble empirical modal decomposition method. Then, spatio-temporal characteristics are extracted from the decomposed spatio-temporal components using a deep residual network. The predicted values of each factor are combined to obtain the final predicted values. To validate the model, traffic flow data that is collected at point 4909A on the M25 motorway in London is used. The results indicate that the proposed model outperforms other models in terms of accuracy metrics such as root mean square error, mean absolute percentage error, mean absolute error, mean squared error, and coefficient of determination. Therefore, the model has high accuracy and practicality and exhibits great potential for short-term traffic flow prediction.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3