Abstract
Large amounts of georeferenced data streams arrive daily to stream processing systems. This is attributable to the overabundance of affordable IoT devices. In addition, interested practitioners desire to exploit Internet of Things (IoT) data streams for strategic decision-making purposes. However, mobility data are highly skewed and their arrival rates fluctuate. This nature poses an extra challenge on data stream processing systems, which are required in order to achieve pre-specified latency and accuracy goals. In this paper, we propose ApproxSSPS, which is a system for approximate processing of geo-referenced mobility data, at scale with quality of service guarantees. We focus on stateful aggregations (e.g., means, counts) and top-N queries. ApproxSSPS features a controller that interactively learns the latency statistics and calculates proper sampling rates to meet latency or/and accuracy targets. An overarching trait of ApproxSSPS is its ability to strike a plausible balance between latency and accuracy targets. We evaluate ApproxSSPS on Apache Spark Structured Streaming with real mobility data. We also compared ApproxSSPS against a state-of-the-art online adaptive processing system. Our extensive experiments prove that ApproxSSPS can fulfill latency and accuracy targets with varying sets of parameter configurations and load intensities (i.e., transient peaks in data loads versus slow arriving streams). Moreover, our results show that ApproxSSPS outperforms the baseline counterpart by significant magnitudes. In short, ApproxSSPS is a novel spatial data stream processing system that can deliver real accurate results in a timely manner, by dynamically specifying the limits on data samples.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference30 articles.
1. Dynamic Identification of Participatory Mobile Health Communities;Aljawarneh,2017
2. Smart cities survey: Technologies, application domains and challenges for the cities of the future
3. Spark: Cluster computing with working sets;Zaharia;HotCloud,2010
4. Apache flink: Stream and batch processing in a single engine;Carbone;Bull. IEEE Comput. Soc. Tech. Committee Data Eng.,2015
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献