Efficient Integration of Heterogeneous Mobility-Pollution Big Data for Joint Analytics at Scale with QoS Guarantees

Author:

Al Jawarneh Isam Mashhour1,Foschini Luca2ORCID,Bellavista Paolo2ORCID

Affiliation:

1. Department of Computer Science, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates

2. Dipartimento di Informatica—Scienza e Ingegneria, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy

Abstract

Numerous real-life smart city application scenarios require joint analytics on unified views of georeferenced mobility data with environment contextual data including pollution and meteorological data. particularly, future urban planning requires restricting vehicle access to specific areas of a city to reduce the adverse effect of their engine combustion emissions on the health of dwellers and cyclers. Current editions of big spatial data management systems do not come with over-the-counter support for similar scenarios. To close this gap, in this paper, we show the design and prototyping of a novel system we term as EMDI for the enrichment of human and vehicle mobility data with pollution information, thus enabling integrated analytics on a unified view. Our system supports a variety of queries including single geo-statistics, such as ‘mean’, and Top-N queries, in addition to geo-visualization on the combined view. We have tested our system with real big georeferenced mobility and environmental data coming from the city of Bologna in Italy. Our testing results show that our system can be efficiently utilized for advanced combined pollution-mobility analytics at a scale with QoS guarantees. Specifically, a reduction in latency that equals roughly 65%, on average, is obtained by using EMDI as opposed to the plain baseline, we also obtain statistically significant accuracy results for Top-N queries ranging roughly from 0.84 to 1 for both Spearman and Pearson correlation coefficients depending on the geo-encoding configurations, in addition to significant single geo-statistics accuracy values expressed using Mean Absolute Percentage Error on the range from 0.00392 to 0.000195.

Funder

European Union’s Horizon 2020 research and innovation program

Publisher

MDPI AG

Subject

Computer Networks and Communications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3