Polygon Simplification for the Efficient Approximate Analytics of Georeferenced Big Data

Author:

Al Jawarneh Isam Mashhour1ORCID,Foschini Luca2ORCID,Bellavista Paolo2ORCID

Affiliation:

1. Department of Computer Science, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates

2. Dipartimento di Informatica—Scienza e Ingegneria, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy

Abstract

The unprecedented availability of sensor networks and GPS-enabled devices has caused the accumulation of voluminous georeferenced data streams. These data streams offer an opportunity to derive valuable insights and facilitate decision making for urban planning. However, processing and managing such data is challenging, given the size and multidimensionality of these data. Therefore, there is a growing interest in spatial approximate query processing depending on stratified-like sampling methods. However, in these solutions, as the number of strata increases, response time grows, thus counteracting the benefits of sampling. In this paper, we originally show the design and realization of a novel online geospatial approximate processing solution called GeoRAP. GeoRAP employs a front-stage filter based on the Ramer–Douglas–Peucker line simplification algorithm to reduce the size of study area coverage; thereafter, it employs a spatial stratified-like sampling method that minimizes the number of strata, thus increasing throughput and minimizing response time, while keeping the accuracy loss in check. Our method is applicable for various online and batch geospatial processing workloads, including complex geo-statistics, aggregation queries, and the generation of region-based aggregate geo-maps such as choropleth maps and heatmaps. We have extensively tested the performance of our prototyped solution with real-world big spatial data, and this paper shows that GeoRAP can outperform state-of-the-art baselines by an order of magnitude in terms of throughput while statistically obtaining results with good accuracy.

Funder

European Union’s Horizon 2020 research and innovation program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3