Scanning Electron Microscopy and Triple TOF-LC-MS-MS Analysis of Polyphenols from PEF-Treated Edible Mushrooms (L. edodes, A. brunnescens, and P. ostreatus)

Author:

Calleja-Gómez Mara1,Roig Patricia1ORCID,Rimac Brnčić Suzana2ORCID,Barba Francisco J.1ORCID,Castagnini Juan Manuel1ORCID

Affiliation:

1. Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy and Food Sciences, Universitat de València, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100 València, Spain

2. Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottiejva 6, 10000 Zagreb, Croatia

Abstract

Pulsed electric fields (PEF) technology has been used as a sustainable method for extracting antioxidant bioactive compounds from different food matrices. In the present study, the optimal conditions of PEF extraction for mushrooms (2.5 kV/cm, 50 kJ/kg, 6 h) were applied to Lentinula edodes, Agaricus brunnescens, and Pleurotus ostreatus to evaluate the total antioxidant capacity of the extracts, followed by the Triple TOF-LC-MS-MS analysis of the phenolic profile compared to A. bisporus by high-performance liquid chromatography coupled to mass spectrophotometry. In addition, the microporation effect of the technology on the mushroom surface was evaluated using scanning electron microscopy. A comparison was made with a maceration extraction (aqueous stirring for 6 h). The results showed that PEF-assisted extraction enhanced the recovery of antioxidant compounds such as 3,5-dicaffeoylquinic and cinnamic acid with contents up to 236.85 µg/100 g dry weight and 2043.26 µg/100 g dry weight from A. bisporus, respectively. However, mixed results were obtained for certain phenolic compounds, including vanillic acid from L. edodes, ellagic acid from P. ostreatus, and thymol from all mushrooms. These results indicate that the application of PEF technology is effective for the extraction of antioxidant compounds in fungal matrices by creating micropores in cell membranes that allow great recovery in matrices with high content of bioactive compounds.

Funder

Ministerio de Ciencia e Innovación

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Reference46 articles.

1. Oxidative stress damage as a detrimental factor in preterm birth pathology;Menon;Front. Immunol.,2014

2. What is oxidative stress?;Betteridge;Metabolism,2000

3. bioactive compounds in edible oils and their role in oxidative stress and inflammation;Mazzocchi;Front. Physiol.,2021

4. Effects of traditional chinese medication-based bioactive compounds on cellular and molecular mechanisms of oxidative stress;Liang;Oxid. Med. Cell. Longev.,2021

5. Royse, D.J., Baars, J., and Tan, Q. (2017). Edible and Medicinal Mushrooms: Technology and Applications, John Wiley & Sons.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3