Effects of Extraction Process Factors on the Composition and Antioxidant Activity of Blackthorn (Prunus spinosa L.) Fruit Extracts

Author:

Drăghici-Popa Ana-Maria1,Boscornea Aurelian Cristian2ORCID,Brezoiu Ana-Maria3ORCID,Tomas Ștefan Theodor2,Pârvulescu Oana Cristina3,Stan Raluca1

Affiliation:

1. Department of Organic Chemistry, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gheorghe Polizu St., 011061 Bucharest, Romania

2. Department of Bioresources and Polymer Science, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gheorghe Polizu St., 011061 Bucharest, Romania

3. Department of Chemical and Biochemical Engineering, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gheorghe Polizu St., 011061 Bucharest, Romania

Abstract

This study aimed at establishing the optimal conditions for the classic extraction of phenolic compounds from Prunus spinosa L. fruits. The effects of different parameters, i.e., ethanol concentration in the extraction solvent (mixture of ethanol and water), operation temperature, and extraction time, on process responses were evaluated. Total phenolic content (TPC), total anthocyanin content (TAC), antioxidant capacity (AC), and contents of protocatechuic acid (PA), caffeic acid (CA), vanillic acid (VA), rutin hydrate (RH), and quercetin (Q) of fruit extracts were selected as process responses. A synergistic effect of obtaining high values of TPC, TAC, AC, PA, and VA was achieved for the extraction in 50% ethanol at 60 °C for 30 min. At a higher level of process temperature, the extraction of protocatechuic acid and vanillic acid was enhanced, but the flavonoids, i.e., rutin hydrate and quercetin, were degraded. A lower temperature should be used to obtain a higher amount of flavonoids. TPC, TAC, AC, and phenolic acid contents (PA, CA, and VA) in the extract samples obtained at an ethanol concentration of 50–100%, a temperature of 30–60 °C, and an extraction time of 30 min were strongly directly correlated.

Funder

Romanian Ministry of Research and Innovation, CCCDI—UEFISCDI

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3