Dietary Histamine Impairs the Digestive Physiology Function and Muscle Quality of Hybrid Grouper (Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂)

Author:

Zhang Yumeng123ORCID,Zhou Hang123,Liu Yu123,Zhu Lulu123,Fan Jiongting123,Huang Huajing123,Jiang Wen123,Deng Junming123,Tan Beiping123

Affiliation:

1. College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China

2. Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China

3. Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China

Abstract

An 8-week feeding experiment was conducted to investigate the effect of dietary histamine on growth performance, digestive physiology function and muscle quality in a hybrid grouper (Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂). Seven isoproteic (50%) and isolipidic (11%) diets were prepared with various histamine inclusion levels of 0, 30, 60, 120, 240, 480 and 960 mg/kg in diets (actual contents were 72.33, 99.56, 138.60, 225.35, 404.12, 662.12 and 1245.38 mg/kg), respectively. Each diet was randomly assigned to triplicates of 30 juveniles (average body weight 14.78 g) per tank in a flow-through mariculture system. The increase in the dietary histamine level up to 1245.38 mg/kg made no significant difference on the growth rate and feed utilization of the grouper. However, the increased histamine content linearly decreased the activities of digestive enzymes, while no differences were observed in groups with low levels of histamine (≤404.12 mg/kg). Similarly, high levels of histamine (≥404.12 mg/kg) significantly damaged the gastric and intestinal mucosa, disrupted the intestinal tight junction structure, and raised the serum diamine oxidase activity and endotoxin level. Meanwhile, high doses of histamine (≥662.12 mg/kg) significantly reduced the activities of antioxidant enzymes, upregulated the relative expression of Kelch-like ECH-associated protein 1, and hardened and yellowed the dorsal muscle of grouper. These results showed that dietary histamine was detrimental to the digestive physiology function and muscle quality of the grouper, although it did compromise its growth performance.

Funder

China Agriculture Research System of MOF and MARA

National Natural Science Foundation of China

Program for Scientific Research Start-up Funds of Guangdong Ocean University

Special Project in Key Fields of Universities in Guangdong Province

Zhanjiang Innovation and Entrepreneurship Team Cultivation “Pilot Program” Project

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3