Multidisciplinary Reliability Design Optimization Modeling Based on SysML

Author:

Zhang Qiang1,Liu Jihong1,Chen Xu1ORCID

Affiliation:

1. School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China

Abstract

Model-Based Systems Engineering (MBSE) supports the system-level design of complex products effectively. Currently, system design and optimization for complex products are two distinct processes that must be executed using different software or platforms, involving intricate data conversion processes. Applying multidisciplinary optimization to validate system optimization often necessitates remodeling the optimization objects, which is time-consuming, labor-intensive, and highly error-prone. A critical activity in systems engineering is identifying the optimal design solution for the entire system. Multidisciplinary Design Optimization (MDO) and reliability analysis are essential methods for achieving this. This paper proposes a SysML-based multidisciplinary reliability design optimization modeling method. First, by analyzing the definitions and mathematical models of multidisciplinary reliability design optimization, the SysML extension mechanism is employed to represent the optimization model based on SysML. Next, model transformation techniques are used to convert the SysML optimization model generated in the first stage into an XML description model readable by optimization solvers. Finally, the proposed method’s effectiveness is validated through an engineering case study of an in-vehicle environmental control integration system. The results demonstrate that this method fully utilizes SysML to express MDO problems, enhancing the efficiency of design optimization for complex systems. Engineers and system designers working on complex, multidisciplinary projects can particularly benefit from these advancements, as they simplify the integration of design and optimization processes, facilitating more reliable and efficient product development.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3