Abstract
Model-based systems engineering (MBSE) has made significant strides in the last decade and is now beginning to increase coverage of the system life cycle and in the process generating many more digital artifacts. The MBSE community today recognizes the need for a flexible framework to efficiently organize, access, and manage MBSE artifacts; create and use digital twins for verification and validation; facilitate comparative evaluation of system models and algorithms; and assess system performance. This paper presents progress to date in developing a MBSE experimentation testbed that addresses these requirements. The current testbed comprises several components, including a scenario builder, a smart dashboard, a repository of system models and scenarios, connectors, optimization and learning algorithms, and simulation engines, all connected to a private cloud. The testbed has been successfully employed in developing an aircraft perimeter security system and an adaptive planning and decision-making system for autonomous vehicles. The testbed supports experimentation with simulated and physical sensors and with digital twins for verifying system behavior. A simulation-driven smart dashboard is used to visualize and conduct comparative evaluation of autonomous and human-in-the-loop control concepts and architectures. Key findings and lessons learned are presented along with a discussion of future directions.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献