Theoretical Analysis on Sequential Multidisciplinary Design Optimization Architecture

Author:

Zheng Ruixiang1,Wang Yijie1,Li Mian2

Affiliation:

1. Joint Institute of University of Michigan-Shanghai Jiao Tong University Minhang, Shanghai 200240, China

2. Joint Institute of University of Michigan-Shanghai Jiao Tong University, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Abstract In the past few decades, multidisciplinary design optimization (MDO) has become a very important research topic along with the increase of the system complexity. In an MDO problem, it is very typical that multiple disciplines are involved, making the problem coupled and complex. Monolithic and distributed architectures have been proposed for solving MDO problems. However, efficient architectures are still needed. In the prior work, a sequential multidisciplinary design optimization (S-MDO) architecture was proposed that has a distributed structure that decomposes the original MDO problem into several subproblems. However, in the original S-MDO work, the theoretical behaviors were not analyzed because its mathematical representations were not clear. In this article, we present a clear mathematical representation of the S-MDO architecture and conduct theoretical analysis on the S-MDO architecture to explain its performance in solving MDO problems. The optimality condition of the S-MDO architecture is derived and summarized as a theorem and a proposition. To demonstrate the general formulation of solving an MDO problem using the S-MDO architecture and validate the correctness of the optimality condition, we use it to obtain the Pareto frontier of a benchmark MDO problem. From the spread of the obtained Pareto frontier, we can conclude that the S-MDO architecture performs well, as long as the global optimum of each disciplinary subproblem can be found.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference34 articles.

1. Multidisciplinary Design Optimization: A Survey of Architectures;Martins;AIAA J.,2013

2. A Survey of Multidisciplinary Design Optimization Methods in Launch Vehicle Design;Balesdent;Struct. Multidiscip. Optim.,2012

3. Implementation and Performance Issues in Collaborative Optimization;Braun,1996

4. State-of-the-Art and Future Trends in Multidisciplinary Design Optimization;de Weck,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3