Mapping Cropland Soil Nutrients Contents Based on Multi-Spectral Remote Sensing and Machine Learning

Author:

Zhang Wenjie1,Zhu Liang2,Zhuang Qifeng1ORCID,Chen Dong1,Sun Tao1

Affiliation:

1. College of Geomatics Science and Technology, Nanjing Tech University, Nanjing 211816, China

2. State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China

Abstract

Nitrogen (N) and phosphorus (P) are primary indicators of soil nutrients in agriculture. Accurate management of these nutrients is essential for ensuring food security. High-resolution, multi-spectral remote sensing images can provide crucial information for mapping soil nutrients at the field scale. This study compares the capabilities of ZH-1 and Sentinel-2 satellite data, along with different spectral indices, in mapping soil nutrients (total N and Olsen-P) using two machine learning algorithms, random forest (RF) and XGBoost (XGB). Two agricultural fields in Suihua City were selected as the study areas for this investigation. The results showed that Sentinel-2 data performed best in computing the total N content in soil using the RF model (R2 = 0.74, RMSE = 0.10 g/kg). However, for the soil Olsen-P content, the XGBoost model performed better with ZH-1 data (R2 = 0.75, RMSE = 9.79 mg/kg) than the RF model. This study demonstrates that both ZH-1 and Sentinel-2 satellite data perform well in terms of accurately mapping soil total N and Olsen-P contents using machine learning. Due to its higher spectral and spatial resolution, ZH-1 remote sensing data provides more detailed information on soil nutrient content during Olsen-P inversion and exhibits comparable accuracy.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3