Affiliation:
1. College of Geomatics Science and Technology, Nanjing Tech University, Nanjing 211816, China
2. State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
Abstract
Nitrogen (N) and phosphorus (P) are primary indicators of soil nutrients in agriculture. Accurate management of these nutrients is essential for ensuring food security. High-resolution, multi-spectral remote sensing images can provide crucial information for mapping soil nutrients at the field scale. This study compares the capabilities of ZH-1 and Sentinel-2 satellite data, along with different spectral indices, in mapping soil nutrients (total N and Olsen-P) using two machine learning algorithms, random forest (RF) and XGBoost (XGB). Two agricultural fields in Suihua City were selected as the study areas for this investigation. The results showed that Sentinel-2 data performed best in computing the total N content in soil using the RF model (R2 = 0.74, RMSE = 0.10 g/kg). However, for the soil Olsen-P content, the XGBoost model performed better with ZH-1 data (R2 = 0.75, RMSE = 9.79 mg/kg) than the RF model. This study demonstrates that both ZH-1 and Sentinel-2 satellite data perform well in terms of accurately mapping soil total N and Olsen-P contents using machine learning. Due to its higher spectral and spatial resolution, ZH-1 remote sensing data provides more detailed information on soil nutrient content during Olsen-P inversion and exhibits comparable accuracy.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Postgraduate Research & Practice Innovation Program of Jiangsu Province
Subject
Plant Science,Agronomy and Crop Science,Food Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献