The Discrete Taxonomic Classification of Soils Subjected to Diverse Treatment Modalities and Varied Fertility Grades Utilizing Machine Olfaction

Author:

Liu Shuyan12,Chen Xuegeng3,Huang Dongyan4,Wang Jingli4,Jiang Xinming4,Meng Xianzhang4,Gao Xiaomei12

Affiliation:

1. Key Laboratory of Bionics Engineering, Ministry of Education, Jilin University, Changchun 130022, China

2. College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China

3. College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China

4. The College of Engineering and Technology, Jilin Agricultural University, Changchun 130118, China

Abstract

Soil classification stands as a pivotal aspect in the domain of agricultural practices and environmental research, wielding substantial influence over decisions related to real-time soil management and precision agriculture. Nevertheless, traditional methods of assessing soil conditions, primarily grounded in labor-intensive chemical analyses, confront formidable challenges marked by substantial resource demands and spatial coverage limitations. This study introduced a machine olfaction methodology crafted to emulate the capabilities of the human olfactory system, providing a cost-effective alternative. In the initial phase, volatile gases produced during soil pyrolysis were propelled into a sensor array comprising 10 distinct gas sensors to monitor changes in gas concentration. Following the transmission of response data, nine eigenvalues were derived from the response curve of each sensor. Given the disparate sample counts for the two distinct classification criteria, this computational procedure yields two distinct eigenspaces, characterized by dimensions of 112 or 114 soil samples, each multiplied by 10 sensors and nine eigenvalues. The determination of the optimal feature space was guided by the “overall feature information” derived from mutual information. Ultimately, the inclusion of random forest (RF), multi-layer perceptron (MLP), and multi-layer perceptron combined with random forest (MLP-RF) models was employed to classify soils under four treatments (tillage and straw management) and three fertility grades. The assessment of model performance involved metrics such as overall accuracy (OA) and the Kappa coefficient. The findings revealed that the optimal classification model, MLP-RF, achieved impeccable performance with an OA of 100.00% in classifying soils under both criteria, which showed almost perfect agreement with the actual results. The approach proposed in this study provided near-real-time data on the condition of the soil and opened up new possibilities for advancing precision agriculture management.

Funder

Jilin Scientific and Technological Development Program

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3