Affiliation:
1. College of Engineering, China Agricultural University, Beijing 100083, China
2. Key Laboratory of Soil-Machine-Plant System Technology of Ministry of Agriculture, Beijing 100083, China
Abstract
Haploid breeding can shorten the breeding period of new maize varieties and is an important means to increase maize yield. In the breeding program, a large number of haploid seeds need to be screened, and this step is mainly achieved manually, which hinders the industrialization of haploid maize breeding. This article aims to develop a multispectral camera to identify the haploid seeds automatically. The camera was manufactured by replacing narrow-band filters of the ordinary CCD camera, and the RGB, 405 nm, 980 nm and 1050 nm images of haploid or diploid seeds were simultaneously captured (the characteristic wavelengths were determined according to color and high-oil markers of maize). The performance was tested using four maize varieties with the two genetic markers. The results show that the developed multispectral camera significantly improved the recognition accuracy of haploid maize seeds to 92.33%, 97.33%, 97% and 93.33% for the TYD1903, TYD1904, TYD1907 and TYD1908 varieties, respectively. The cameras in the near-infrared region (wavelengths of 980 nm and 1050 nm) achieved better performance for the varieties of high-oil marker, with an increase of 0.84% and 1.5%, respectively. These results demonstrate the strong potential of the multispectral imaging technology in the haploid seed identification of maize.
Funder
The National Key Research and Development Program of China
the earmarked fund for CARS-02
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献