Detection of Soluble Solids Content (SSC) in Pears Using Near-Infrared Spectroscopy Combined with LASSO–GWF–PLS Model

Author:

Zhan Baishao1,Li Peng1,Li Ming1,Luo Wei1,Zhang Hailiang1

Affiliation:

1. College of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China

Abstract

The soluble solids content (SSC) of pears is mainly composed of sugars, organic acids, and other soluble substances and is one of the important indices used to measure the sweetness and quality of pear juice. The SSC of pears is mainly composed of sugars, organic acids, amino acids, esters, alcohols, phenols, flavonoids, and other compounds, and different groups within these compounds have different characteristic absorption peaks corresponding to different characteristic wavelengths. Traditional methods such as genetic algorithm (GA) and competitive adaptive reweighted sampling (CARS) models used for screening characteristic wavelengths are mainly based on statistical methods, and characteristic wavelengths are selected by finding the wavelengths related to the changes in the concentration of the target analytes. By ignoring the molecular structure and chemical properties of the target analytes and disregarding the influence of the groups of the compounds in the target analytes on the spectral characteristics, wavelengths that are not related to the target analytes may be selected, thus affecting the accuracy of the analytical results. In this paper, a partial least squares (PLS) model was established based on the characteristic wavelengths of CARS, GA, and LASSO algorithms, and the best least absolute shrinkage and selection operator (LASSO) was selected and compared with the characteristic wavelengths selected by group weighted fusion (GWF). The LASSO regression was validated by 10-fold cross-validation to select the appropriate regularization parameter, and the 33 characteristic wavelengths correlated with the SSC of pears were selected in the full spectral range, and the 9 characteristic wavelengths corresponding to the group response were weighted and fused and input into the PLS regression model. Using an established model, the coefficient of determination (R2) and the root mean square error (RMSE) of the calibration set were 0.992 and 0.177%, respectively, and the R2 and RMSE of the test set were 0.998 and 0.128%, respectively. The R2 of our LASSO–GWF–PLS prediction model was improved from 0.975 to 0.998, indicating that the LASSO–GWF–PLS method has very good prediction ability for detection of SSC in pears.

Funder

National Natural Science Foundation of China

iangxi Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3