Abstract
Capsaicinoids, which cause a hot sensation when eaten, are uniquely present in pepper (Capsicum sp.) and are biosynthesized by combining vanillyl amine with branched fatty acids. A mutation in the gene encoding putative aminotransferase (pAMT)—the enzyme that normally biosynthesizes the capsaicinoid precursor vanillyl amine—leads instead to the biosynthesis of vanillyl alcohol, which combines with branched fatty acids to form capsinoids. Here, we report a method for increasing the capsaicinoid and capsinoid contents using quantitative trait locus (QTL) alleles involved in capsaicinoid biosynthesis in the pericarps of extremely spicy peppers. QTLs for capsinoid contents were detected on chromosome 6 and 10 using an F2 population from ‘SNU11–001’ and ‘Bhut Jolokia (BJ)’ (‘SJ’). ‘SNU11–001’ contains high capsinoid contents and ‘BJ’ contains high capsaicinoid contents in both the placenta and pericarp. These QTLs overlapped QTL regions associated with pungency in the pericarp. ‘BJ’ was crossed also with ‘Habanero’ (‘HB’), which contains capsaicinoids mainly in the placenta, and the resulting (‘HJ’) F2 and F3 offspring with ‘BJ’ genotypes were selected based on QTL markers and the pericarp pungency phenotype. Similarly, F2 and F3 offspring with high capsinoid contents in the pericarp were selected in ‘SJ’ with reference to ‘BJ’ genotypes at the QTLs. Through continuous self-pollination, ‘SJ’ and ‘BJ’ lines with high capsinoid and capsaicinoid contents, respectively, in both the placenta and pericarp were developed. This study is the first to show that lines containing high levels of capsinoids and capsaicinoids can be bred using pericarp capsaicinoid biosynthesis genes.
Funder
Rural Development Administration
National Research Foundation of Korea
Subject
Plant Science,Agronomy and Crop Science,Food Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献