Analysis and Evaluation of Influencing Factors on Uniform Sowing of Wheat with Wide Seed Belt after Sowing and Soil Throwing Device

Author:

Wang Bokai,Gu Fengwei,Hu Zhichao,Wu Feng,Chen Xulei,Luo Weiwen

Abstract

The uneven sowing of wheat on ground covered with rice straw in the rice–wheat rotation area in the middle and lower reaches of the Yangtze River has become a serious problem. Therefore, a test bed for throwing soil after sowing with a wide wheat seed belt was designed, which could complete the functions of straw crushing, straw lateral concentration and uniform sowing at one time. The discrete element simulation model of throwing soil after sowing with a wide wheat seed belt was established with rotary blade shaft speed, soil guide plate angle and soil retaining plate angle as variables. Taking the variation coefficient of wheat sowing depth and variation coefficient of sowing lateral uniformity as evaluation indexes, the effects of three variables on sowing uniformity were analyzed by single factor test and Box–Behnken test. The results of single factor test observed that when the rotating speed of rotary blade shaft was 260–300 rpm, the angle of soil guide plate was 36°–48°, the angle of soil retaining plate was 58°–74° and the experiment of utilizing a soil throwing and covering device with a wide seed belt after sowing revealed a good consistency of sowing depth and lateral uniformity effect. The Box–Behnken simulation experiment showed that the primary and secondary factors affecting the variation coefficient of wheat sowing lateral uniformity were the angle of soil guide plate, the rotation speed of rotary blade shaft, the angle of soil retaining plate and the angle of soil guide plate. When the rotation speed of rotary blade shaft, the angle of soil guide plate and the angle of soil retaining plate were 282.1 rpm, 42.4° and 65.5°, respectively, the soil throwing and covering device after sowing has the best seed-homogenizing effect. At this time, the variation coefficients of sowing depth and lateral uniformity in simulation test and field verification test were 4.35% and 4.57%, respectively, and 12.46% and 12.73%, respectively. The results of field verification test were basically consistent with those of the simulation test, which proved that the results of applying discrete element methods to optimize the soil-throwing device after sowing with a wide seed belt were credible. This study could provide a theoretical reference for the structure optimization of a soil-throwing device after sowing with a wide seed belt.

Funder

The Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference23 articles.

1. Effects of Sowing Methods on Soil Water Consumption, Yield and Quality Formation of Winter Wheat;Zhang;Master’s Thesis,2019

2. Design and Experiment of no-Tillage Precision Rice Hill-dropDrilling Machine for Dry Land and Optimization Design of Complete;Zheng;Ph.D. Thesis,2018

3. Design and Experiment of Wide-boundary Seldom-tillage Wheat Planter with Soil-shunting Function;Zheng;Chin. Soc. Agric. Mach.,2022

4. Research Progress of Conservation Tillage Technology and Machine;He;Chin. Soc. Agric. Mach.,2018

5. Design and experiment of broad width and precision minimal tillage wheat planter in rice stubble field;Hu;Trans. Chin. Soc. Agric. Eng.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3