Soil Particle Modeling and Parameter Calibration Based on Discrete Element Method

Author:

Yan Dongxu,Yu Jianqun,Wang Yang,Zhou LongORCID,Tian Ye,Zhang Na

Abstract

In order to establish a Discrete Element Method (DEM) model of soil particles, the soil in the laboratory soil bin was used as the research object. The soil texture was determined to be sandy loam by sieving, and the shape of the soil particles was analyzed by an image particle analyzer to establish a geometric model of the soil particles. The Edinburgh Elasto-Plastic Adhesion (EEPA) model was chosen as the contact model for the soil particle simulation analysis, and the accuracy of the model selection was determined by texture tests. The parameters in the contact model played a crucial role in the results of the simulation. Test methods were used to obtain parameters for the soil particles that were easy to measure. For parameters that could not be measured in the contact model, a direct shear test was used as the calibration test, and after screening the sensitive parameters using the PB test, the response surface method was used to calibrate the sensitive parameters. The accuracy of the calibration results was verified by comparing the simulation and test results of the direct shear test under different loadings.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3