Chestnut Episperm as a Promising Natural Source of Phenolics from Agri-Food Processing by-Products: Optimisation of a Sustainable Extraction Protocol by Ultrasounds

Author:

Donno Dario12ORCID,Turrini Federica34ORCID,Farinini Emanuele3,Mellano Maria Gabriella12,Boggia Raffaella35ORCID,Beccaro Gabriele Loris12ORCID,Gamba Giovanni12ORCID

Affiliation:

1. Department of Agriculture, Forestry and Food Science, University of Torino, Largo Braccini 2, 10095 Grugliasco, Italy

2. Chestnut R&D Center—Piemonte, Regione Gambarello 23, 12013 Chiusa di Pesio, Italy

3. Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy

4. National Center for the Development of New Technologies in Agriculture (Agritech), 80121 Napoli, Italy

5. Centro Nazionale Biodiversità: National Biodiversity Future Center (NBFC), 90133 Palermo, Italy

Abstract

Chestnut processing has increasingly grown in recent years. All the processes involved in the chestnut supply chain are characterized by the production of high levels of by-products that cause several environmental and disposal issues. The Castanea spp. fruit production is related to a high number of chestnut episperm. This underutilized agricultural by-product may be evaluated as a good resource for the extraction of health-promoting natural molecules, such as phenolics. This preliminary study aimed to develop and optimize, using a multivariate statistical approach, a sustainable protocol for the ultrasound-assisted extraction (UAE) of the main phenolics from chestnut episperm (cv Marsol, C. sativa × C. crenata). A design of experiment (DoE) approach was employed. This approach focused on the two quantitative UAE process factors: the extraction time (X1), within a timeframe ranging from 10 to 30 min, and the sample-to-solvent (w/v) ratio (X2), ranging from 1/30 to 1/10. These variables were investigated to determine their impact on phenol extraction yield. Exploratory analysis, in particular principal component analysis (PCA) and multiple linear regression (MLR), were carried out on the studied responses. The phenolic characterization of ten different extracts was also performed using high-performance liquid chromatography (HPLC), both to define the levels of specific phenolics selected for their health-promoting properties and to evaluate some important features, such as the total antioxidant capacity. The values of total polyphenolic content (TPC) obtained in the different experiments ranged between 97 (extract 4) and 142 (extract 6) mg GAE/g of dried weight (DW). Moreover, results from the ferric reducing antioxidant power (FRAP) test confirmed the high TPC values, highlighting that all the ultrasound extracts contained excellent levels of molecules with good antioxidant properties. In particular, extracts 2 and 3 showed the highest AOC values (about 490–505 mmol Fe2+/Kg of dried weight). The proposed optimized protocol allowed for obtaining formulations characterized by high levels of tannins, phenolic acids, and catechins. Indeed, episperm extracts contained high levels of chlorogenic acid (15–25 mg/100 g DW), ferulic acid (80–120 mg/100 g DW), castalagin (20–80 mg/100 g DW), and vescalagin (40–75 mg/100 g). Finally, in this research study, the potential of chestnut episperm as a source of polyphenolic molecules to be extracted by green technologies and used in several food and/or pharmaceutical applications was evaluated to valorize a sustainable reuse strategy of agri-food processing by-products, also reducing the environmental impact of this waste derived from chestnut processing.

Funder

Project National Center 410 for the Development of New Technologies in Agriculture

Italian Ministry of University 415 and Research

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3