Design and Testing of the Double-Symmetric Eccentric Exciter for Fruit Tree Vibration Harvest

Author:

Jiao Haobo1ORCID,Luo Juming1,Tang Aifei1,Wang Lihong1,Ma Chen1,Li Yaping2,Li Chengsong13

Affiliation:

1. College of Engineering and Technology, Southwest University, Chongqing 400715, China

2. College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832000, China

3. Key Laboratory of Agricultural Equipment in Hilly and Mountainous Areas, Chongqing 400715, China

Abstract

The amplitude of excitation force from exciters used in fruit tree vibration harvesting remains constant at a given frequency, leading to poor fruit detachment ratio and tree damage. A solution has been proposed through the development of a Double-Symmetric Eccentric Exciter (DSEE). This new exciter allows for the adjustment of excitation force amplitude while maintaining a constant frequency by varying the phase angle of the DSEE. To validate the effectiveness of the DSEE, vibration tests were conducted on fruit trees using different parameter exciting forces. Acceleration sensors were employed to measure the vibration accelerations of the tree branches. The experimental results revealed that when a fixed frequency excitation force with a constant phase angle was applied to the trunk, the vibration acceleration of branches exhibited inconsistent variations due to differences in the vibration differential equation parameters of each branch. Furthermore, it was observed that increasing the phase angle of the DSEE at a fixed frequency led to larger vibration accelerations in every branch. This signifies that adjusting the phase angle of the DSEE can effectively increase the amplitude of the exciting force. Consequently, the ability to control both the amplitude and frequency of the excitation force independently can mitigate issues such as low fruit harvest rates and minimize damage to fruit trees.

Funder

National Natural Science Foundation of China

Department of Science and Technology, Xinjiang Uygur Autonomous Region

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3