A Multiplex PCR System for the Screening of Genetically Modified (GM) Maize and the Detection of 29 GM Maize Events Based on Capillary Electrophoresis

Author:

Yi Hongmei,Liang Ziyue,Ge Jianrong,Zhang Haibo,Liu Fengze,Ren Xuezhen,Ren Jie,Wang Haijie,Ren Jiali,Ren Xingxu,Zhang Ying,Jin Fang,Jin Shiqiao,Zhao Yikun,Wang Fengge

Abstract

The detection of genetically modified (GM) maize events is an inevitable necessity under the strict regulatory systems of many countries. To screen for GM maize events, we developed a multiplex PCR system to specifically detect 29 GM maize events as well as the cauliflower mosaic virus 35S promoter, the Agrobacterium tumefaciens nos terminator, the Streptomyces viridochromogenes pat gene, and the endogenous zSSIIb maize reference gene. These targets were divided into five panels for screening and event-specific detection by multiplex (10-plex, 7-plex, 7-plex, 4-plex, and 5-plex) PCR. All amplification products were separated and visualized by fluorescence capillary electrophoresis (CE). By taking advantage of the high resolution, multiple fluorescence detection, and high sensitivity of CE, our system was able to identify all targets simultaneously with a limit of detection of 0.1%. The accurate identification of specific amplification peaks from different GM maize materials by CE confirmed the specificity of the system. To verify the practical applicability of this system, we analyzed 20 blind samples. We successfully identified five MON810, four TC1507, and three MIR162 samples. The detection of concomitant elements also verified the accuracy of this approach. Our system can, therefore, be used for the screening and detection of GM maize events. The system, which is easy to use, facilitates high-throughput detection with the help of a high-throughput platform and automated identification software. Multiplex PCR coupled with CE is, thus, very suitable for the detection of genetically modified organisms (GMOs) with a large number of detection targets. Additional multiplexed electrophoretic targets can be easily incorporated as well, thereby increasing the usefulness of this system as the number of GMO events continues to increase.

Funder

The Major Special Project for Cultivating New Varieties of Genetically Modified Organisms of China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3