Feature Wavelength Selection Based on the Combination of Image and Spectrum for Aflatoxin B1 Concentration Classification in Single Maize Kernels

Author:

Zhou Quan,Huang Wenqian,Tian XiORCID

Abstract

Aflatoxin B1 (AFB1) is a very strong carcinogen, maize kernels are easily infected by this toxin during storage. Rapid and accurate identification of AFB1 is of great significance to ensure food safety. In this study, a novel method for classification of AFB1 in single maize kernels was developed. Four groups of maize kernel samples with different AFB1 concentrations (10, 20, 50, and 100 ppb) were prepared by artificial inoculation of toxin. In addition, one group of maize kernel samples without AFB1 were prepared as control, each group with 70 samples. The visible and short wave near-infrared (Vis-SWNIR) region (500–1000 nm) and long wave near-infrared (LWNIR) region (1000–2000 nm) hyperspectral images of all samples were obtained respectively, and the hyperspectral images in 500–2000 nm range was obtained after spectral pretreatment and fusion. Kennard-Stone algorithm was used to divide the samples into calibration set or prediction set. Competitive adaptive reweighted sampling (CARS) and successive projections algorithm (SPA) were used to roughly select the characteristic wavelengths of the calibration set samples, and 25 and 26 effective wavelengths were obtained respectively. Based on the roughly selected wavelengths, a method of fine selection of the characteristic wavelengths was proposed by using the gray-value difference of image (GDI), and a few number of characteristic wavelengths were further selected. Under the LDA classification model, 10 characteristic wavelengths were selected to test the prediction set and the independent verification samples, and the ideal result were obtained with an accuracy of 94.46% and 91.11%, respectively. This study provides a new approach for AFB1 concentration classification of single maize kernels.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3