Status of Essential Elements in Soil and Grain of Organically Produced Maize, Spelt, and Soybean

Author:

Dragicevic VesnaORCID,Stoiljkovic Milovan,Brankov MilanORCID,Tolimir Miodrag,Tabaković MarijenkaORCID,Dodevska Margarita S.ORCID,Simić MilenaORCID

Abstract

Organic agriculture offers many benefits through the increased nutritional quality of produced crops, agro-ecosystem preservation, and climate change mitigation. The development of an efficient nutrient management strategy in low-input systems, such as organic agriculture, which supports soil fertility and essential nutrients absorption by crops, is continually exploring. Thus, a study with maize–spelt–soybean rotation during a 5-year period in organic production was established to evaluate the variability in soil organic matter (SOM) and the status of available elements: N, P, K, Ca, Mg, Fe, Cu, Mn, Zn, and Si from the soil, as well as grain yield (GY) and the content of protein, P, K, Ca, Mg, Fe, Cu, Mn, Zn, and Si concentration in the grain of spelt, maize, and soybean. Significant variations in mineral elements in the soil, GY, and grain composition were detected. Spelt achieved the highest average GY, while soybean grain was the richest in a majority of examined nutrients. The soil Ca content was important for GY, while the protein level in grain was generally tied to the Mn level in the soil. It was recognized that soil–crop crosstalk is an important strategy for macro- and micro-nutrients management in the soil and grain of organically produced spelt, maize, and soybean. While a reduction in the GY and protein concentration in grain was present over time, it was established that a low-input system under dry-farming conditions supports nutrient availability and accumulation in grain, under semi-arid agro-ecological conditions of central Serbia.

Funder

Ministry of Education, Science and Technological Development, Republic of Serbia

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3