Impact of organic and integrated production systems on yield and seed quality of rainfed crops and on soil properties

Author:

Gopinath Kodigal A.,Venkatesh Govindarajan,Manjunath Mallappa,Jayalakshmi Mitnala,Prasad Telaprolu Venkata,Rajkumar Bollam,Venugopalan Visha Kumari,Raju Bellapukonda Murali Krishna,Prabhakar Mathyam,Chary Gajjala Ravindra,Singh Vinod Kumar

Abstract

Mineral and vitamin deficiencies together affect a greater number of human populations in the world than does protein malnutrition. Organic farming is reported to improve nutritional quality of food grains while also improving soil health. However, sufficient scientific information on several aspects of organic farming based on long-term studies is lacking particularly under rainfed conditions of India. The purpose of this study was to assess the long-term impact of organic and integrated production systems on crops yield and quality, economic returns and soil properties. The study was conducted with three crops, sunflower (Helianthus annuus L.), pigeonpea (Cajanus cajan L.), and greengram [Vigna radiata (L.) Wilczek] under three different production systems, control (use of chemical inputs alone), organic and integrated. The results of the 10-year study revealed that, the average production of integrated system was on par with organic management and recorded significantly higher pigeonpea equivalent yield (PEY) (827 kg ha−1) compared to control (chemical inputs) (748 kg ha−1). In general, the yield gap between organic and integrated production systems declined from fourth year for greengram and eighth year for sunflower, during the 10-year experimental period whereas the pigeonpea yield was similar under both production systems from first year. Plots under organic management had significantly lower bulk density (1.18 mg m−3), higher water holding capacity (38.72%) and porosity (53.79%) compared to integrated production system and control (chemical inputs). The soil organic C (SOC) content in the plots under organic production system was 32.6% more than the initial organic carbon of the soil (0.43%), with higher soil N (205.2 kg ha−1). Plots under integrated production system, however, had higher soil P (26.5 kg ha−1) compared with other treatments. The dehydrogenase activity (5.86 μg TPF g−1 soil h−1) and microbial biomass carbon (317.3 μg g−1 soil) content was higher in the plots under organic production system than under other systems. Organically produced pigeonpea and greengram seeds had similar protein content with that of integrated system, and higher K and micronutrient (Fe, Zn, Cu, and Mn) contents than other treatments. The results show the potential of organic production system in improving crop yields, soil properties and produce quality in semiarid rainfed areas.

Publisher

Frontiers Media SA

Subject

Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Food Science

Reference82 articles.

1. Influence of crops and different production systems on soil carbon fractions and carbon sequestration in rainfed areas of semiarid tropics in India;Gopinath;Sustainability,2022

2. Productivity of barnyard millet (Echinochloa frumentacea) in relation to organic nutrition under rainfed conditions of Western Himalaya region;Yadav;Indian J. Agron.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3