Biofortification of Soybean (Glycine max L.) through FeSO4·7H2O to Enhance Yield, Iron Nutrition and Economic Outcomes in Sandy Loam Soils of India

Author:

Dhaliwal Salwinder SinghORCID,Sharma VivekORCID,Shukla Arvind KumarORCID,Kaur Janpriya,Verma VibhaORCID,Kaur Manmeet,Singh Prabhjot,Kaur Lovedeep,Verma Gayatri,Singh JagdishORCID,Gaber Ahmed,Hossain Akbar

Abstract

The nutritional value of Glycine max L. (soybean) and its yield potential for improving sustainability of agricultural systems has resulted into its increased production. Soybean crop has potential to replace the rice crop in the rice-wheat cropping system. However, the crop has shown high sensitivity towards iron (Fe) deficiency, and thus recorded major yield and nutritional quality losses. Thus, a three-year field experiment was planned to compare the impact of the application rate (0.5% and 1.0%) and number of sprays of FeSO4 on yield, Fe nutrition, and economic outcomes of soybeans. The Fe application posed a beneficial impact on the studied parameters due to an increase in enzymatic activity of Fe-containing enzymes. Among various treatments, maximum increase in grain and straw yield (3064 and 9341 kg ha−1, respectively) was obtained with 0.5% FeSO4 application at 30, 60, and 90 DAS over the control (2397 and 6894 kg ha−1, respectively). Similar results were attained for grain Fe concentration (69.9 mg kg−1) and Fe uptake in grain and straw (214 and 9088 g ha−1, respectively). The results were statistically non-significant, with the treatment in which 0.5% FeSO4 was applied at 30 and 60 DAS. The economic returns of soybean cultivation were also highest with 0.5% FeSO4 application at 30, 60, and 90 DAS with highest benefit; the cost (3.02) followed by treatment in which 0.5% FeSO4 was applied at 30 and 60 DAS. Thus, 0.5% FeSO4 application at 30, 60, and 90 DAS can be recommended for soybeans grown on sandy loam soil followed by 0.5% FeSO4 application at 30and 60 DAS to harness maximum yield, Fe concentration, and profitability.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3