Abstract
Aiming at the problems of the poor passing capacity of machines and low cleaning rate of seed strip during wheat no-tillage sowing in annual double cropping areas of North China, a spiral discharge anti-blocking and row-sorting device (SDARD) was designed and is reported in this paper. After the straw was cut and chopped by the high-velocity rotating no-till anti-blocking knife group (NAKG), the straw was thrown into the spiral discharging mechanism (SDM) behind the NAKG. The chopped straw was discharged to the non-sowing area to reach the effect of seed strip cleaning through the interaction between the SDM and the row-sorting of straw mechanism (RSM). Based on a theoretical analysis for determining the parameters of crucial components, the quadratic rotation orthogonal combination test method was adopted, and the operating velocity of machines (OVM), the rotary velocity of the spiral shaft (RVSS), and the height of the holding hopper from the ground (HHHG) were selected as the test factors. The straw cleaning rate (SCR) was taken as the test index. The discrete element simulation test was carried out, the regression model of the SCR was established, and parameters optimization and field test were carried out. The results show that the significant order of the three influencing factors on the SCR was HHHG > OVM > RVSS. The optimal combination of operating parameters was that OVM was 5 km/h, RVSS was 80 r/min, and HHHG was 10 mm. Under the optimal parameter combination, the average SCR was 84.49%, which was 15.5% higher than the no-till planter without the device, and the passing capacity of machines was great, which met the agronomic requirements of no-tillage sowing of wheat in annual double cropping areas. This study could provide a reference for the design of no-tillage machines.
Funder
the China Agriculture Research System of MOF and MARA
Subject
Plant Science,Agronomy and Crop Science,Food Science
Reference36 articles.
1. Research progress of no/minimum tillage corn seeding technology and machine in northeast black soil regions of China;Wang;Trans. Chin. Soc. Agric. Mach.,2021
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献