Parameter Optimization and Experiment of a Seed Furrow Cleaning Device for No-Till Maize Seeding

Author:

Yuan Panpan,Li Hongwen,Huang Shenghai,Jiang Shan,Xu Jing,Lin HanORCID,Li Rongrong

Abstract

To avoid the issues of seeds lying atop straw, where the seeds cannot germinate, during no-till maize seeding, a seed furrow cleaning device is proposed. The device uses rotating spring teeth and a curved sliding shovel to clear the straw from the seed furrow to the outside. The critical components of the side throwing mechanism, rotary disc and spring teeth design are analyzed, and the value range of the installation inclination angle, rotating speed and bending angle of spring teeth are determined. The force on the straw at the moment of starting to touch and throw it is analyzed theoretically in the three installation directions of forward inclination, radial and backward inclination on the rotary disc, and the backward inclination of the spring teeth is determined. A simulation model of the seed furrow cleaning device is established by using the discrete element method simulation software; the forwarding speed, rotating speed, installation inclination angle, and bending angle of spring teeth are used as influencing factors to carry out single-factor experiments. The influence characteristics of different parameters on seed ditch cleaning effect are analyzed from the aspects of straw cleaning quantity and soil disturbance. A field validation experiment is carried out, and the results show that when rotating speed is 180 r/min, installation inclination angle of spring teeth is 40°, and bending angle is 30°, the straw cleaning rate is 82.26%. The research could provide references to develop the no-till seeder for maize seeding.

Funder

National Natural Science Foundation of China

Xinjiang key research and development program

Xinjiang Agricultural Machinery R&D, Manufacturing, Promotion and Application Integration Project

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference32 articles.

1. Conservation agriculture as a promising trade-off between conventional and organic agriculture in bundling ecosystem services;Agric. Ecosyst. Environ.,2020

2. Research progress of conservation tillage technology and machine;Trans. Chin. Soc. Agric. Mach.,2018

3. Effects of straw mulching and tillage on soil water characteristics;Trans. Chin. Soc. Agric. Mach.,2019

4. Strip tillage width effects on sunflower seed emergence and yield;Soil Tillage Res.,2013

5. Conservation tillage of rainfed maize in semi-arid Zimbabwe: A review;Soil Tillage Res.,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3