Simulation and Optimization Experiment: Working Process of a Cleaning Device for Flax Combine Harvester

Author:

Dai Fei1,Xu Pengqing1,Yuan Zixiang1,Shi Ruijie1,Zhao Yiming1,Song Xuefeng1,Zhao Wuyun1

Affiliation:

1. College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China

Abstract

The aim of this study was to investigate the effects of different working parameters on the cleaning efficiency of a cleaning device during the separation and cleaning process in a flax joint harvesting machine. To achieve this objective, CFD–DEM joint simulation technology was used to construct a CFD model of the cleaning device and a DEM model of the discharged flax material; the simulation results show the flax cleaning process. The Box–Behnken experimental design method was used to establish a mathematical model between the vibrating sieve frequency, vibrating sieve amplitude, fan wind speed, seed impurity rate, and cleaning loss rate to find the optimum combination of cleaning equipment parameters and to conduct a field verification test. The simulation test results show that, when the vibrating sieve frequency is 6 Hz, the vibrating sieve amplitude is 14.42 mm, the fan wind speed is 5.96 m/s, and the machine cleaning effect is the best; the simulation test was measured following a seed impurity rate of 2.97% and cleaning loss rate of 2.17%. The field test verification results show that, after optimizing the working parameters of the cleaning device, the cleaning loss rate is 3.58% and the impurity rate of the grain combine harvester is 3.16%, thus meeting the national and industry requirements. The test results and simulation results are highly consistent with the model, thereby verifying the reliability of the model. The results of the study provide a reference for the design and performance optimization of the flax combine cleaner.

Funder

by Ministry of Finance and Ministry of Agriculture and Rural Affairs: National System of Modern Agricultural Industry Technology

Fuxi Young Talents Fund of Gansu Agricultural University

Gansu Agricultural University Youth Mentor Fund Project

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3