A High Sensitivity Electrochemical Immunosensor Based on Monoclonal Antibody Coupled Flower-Shaped Nano-ZnO for Detection of Tenuazonic Acid

Author:

Zhang Chi,Du Congcong,Liu Wei,Guo Ting,Zhou Ying,Zhou HongyuanORCID,Zhang Yuhao,Liu Xiaozhu,Ma Liang

Abstract

In this paper, an electrochemical biosensor was established for the high-sensitivity detection of Tenuazonic acid (TeA) in fruits based on the enrichment of flower-shaped nano-ZnO and the specific recognition of immune response. Herein flower-shaped nano-ZnO (ZnO NFs) with a hexagonal wurtzite structure and diameter of 700–800 nm were demonstrated to have the optimal specific surface area and outstanding conductivity, compared with different morphology, sizes, and crystal structures of nano-ZnO. Second, the ZnO NFs were used as carriers for efficiently immobilizing monoclonal antibodies to obtain antibody bioconjugates, which were anchored on the 2-mercaptobenzoic acid-modified gold electrode by amide reaction. In the presence of TeA, the monoclonal antibody could specifically recognize and bind to it, resulting in a decrease in electron transfer ability on the gold electrode surface. Finally, the electrochemical biosensor showed a range from 5 × 10−5 μg/mL to 5 × 10−1 μg/mL with a detection limit of 1.14 × 10−5 μg/mL. Furthermore, it exhibited high selectivity for TeA among other analogs, such as Altenuene (ALT) and Alternariol (AOH). Notably, the proposed strategy could be employed to monitor TeA in tomato and citrus, showing potential application prospects in practical application and commercial value.

Funder

the National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities of China

Venture & Innovation Support Program for Chongqing Overseas Returnees

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3