Isolation of Bacillus velezensis from Silage and Its Effect on Aerobic Stability and In Vitro Methane Production of Whole-Plant Corn Silage

Author:

Zhang Chen12,Zhang Zimo1,Zhu Mengfan12,Wang Yongliang2,Zhou Tangtang1,Wan Fachun2,Zhang Yunhua3,Chen Lijuan1

Affiliation:

1. The Biological Feedstuff Laboratory, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China

2. Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China

3. Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China

Abstract

Once a silo has been opened, the silage inside will face challenges such as aerobic deterioration, rot, and contamination. Biocontrol bacteria, as a kind of biological antiseptic, are highly effective and natural and are gaining increasing attention. This study aimed to screen a strain with anti-microbial activity against silage spoilage microorganisms and examine its effects on the fermentation quality, aerobic stability, in vitro digestion, and methane production of silage. Lactic acid bacteria, pathogenic and rot-causing microorganisms, were used as indicators to screen the strains for putrefactive silage. The bacteriostatic spectrum, growth performance, and tolerance to the silage environment of the strain were tested. A strain named D-2 was screened from rotten whole-plant corn silage and identified as Bacillus velezensis through physiological and biochemical tests as well as 16S rDNA sequencing. This study found that D-2 exhibits antibacterial effects on several microorganisms, including Escherichia coli, Staphylococcus aureus, Salmonella enteritidis, Aspergillus niger, Saccharomyces cerevisiae, Fusarium oxysporum, and Fusarium graminearum. However, it has no adverse effect on Lactobacillus reuteri, Enterococcus faecium, or Lactobacillus casei. D-2 can attain a stable stage within 10 h and withstand temperatures of up to 70 °C. Moreover, this study found that D-2 had a high survival rate of over 97% after 48 h in a lactic acid environment with pH 4. Freshly chopped whole-plant corn was inoculated without or with D-2 and ensiled for 60 days. The results show that D-2 inoculations increase the content of water-soluble carbohydrates, acetic acid, and propionic acid in the silage and decrease the number of yeasts and molds, the NH4+-N/TN ratio, and the pH. We also found that fermenting whole-plant corn with D-2 significantly increased the in vitro digestibility and the propionic acid content, while also significantly inhibiting methane production. After being exposed to air for 10 days, D-2 can still effectively reduce the total number of yeasts and molds, prevent the decrease in lactic acid bacteria, and inhibit the increase in the pH and NH4+-N/TN ratio of silage products. Overall, D-2 is resistant to pathogenic and rot-causing microorganisms, allowing for easy adaptation to silage production conditions. D-2 can effectively improve aerobic stability and reduce losses in the nutritional value of silage, indicating possible applications for the prevention of silage rot and methane production.

Funder

National Natural Science Foundation of China

National Key R&D Program

Science and Technology Major Project of Yunnan Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3