Improving Land Use/Cover Classification Accuracy from Random Forest Feature Importance Selection Based on Synergistic Use of Sentinel Data and Digital Elevation Model in Agriculturally Dominated Landscape

Author:

Ibrahim Sa’ad

Abstract

Land use and land cover (LULC) mapping can be of great help in changing land use decisions, but accurate mapping of LULC categories is challenging, especially in semi-arid areas with extensive farming systems and seasonal vegetation phenology. Machine learning algorithms are now widely used for LULC mapping because they provide analytical capabilities for LULC classification. However, the use of machine learning algorithms to improve classification performance is still being explored. The objective of this study is to investigate how to improve the performance of LULC models to reduce prediction errors. To address this question, the study applied a Random Forest (RF) based feature selection approach using Sentinel-1, -2, and Shuttle Radar Topographic Mission (SRTM) data. Results from RF show that the Sentinel-2 data only achieved an out-of-bag overall accuracy of 84.2%, while the Sentinel-1 and SRTM data achieved 83% and 76.44%, respectively. Classification accuracy improved to 89.1% when Sentinel-2, Sentinel-1 backscatter, and SRTM data were combined. This represents a 4.9% improvement in overall accuracy compared to Sentinel-2 alone and a 6.1% and 12.66% improvement compared to Sentinel-1 and SRTM data, respectively. Further independent validation, based on equally sized stratified random samples, consistently found a 5.3% difference between the Sentinel-2 and the combined datasets. This study demonstrates the importance of the synergy between optical, radar, and elevation data in improving the accuracy of LULC maps. In principle, the LULC maps produced in this study could help decision-makers in a wide range of spatial planning applications.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3