Evaluation of Different Machine Learning Algorithms for Land Cover Mapping: A Case Study of Izmir Province

Author:

DANACIOĞLU Şevki1ORCID

Affiliation:

1. İZMİR BAKIRÇAY ÜNİVERSİTESİ

Abstract

Doğal kaynak yönetimi ve mekânsal planlama süreçlerinde ayrıntılı, güncel ve doğru bilgilere dayanan arazi örtüsü ve arazi kullanımı (AÖAK) durumunun tespiti önemli rol oynamaktadır. Ancak, bölgesel ölçekte arazi kullanım dinamiklerinin izlenmesini engelleyen veri işleme süreci ve depolama gereksinimi gibi bazı sınırlılıklar vardır. GEE, küresel ölçekte coğrafi verilerin işlenmesine olanak tanıyan açık kaynak kodlu, ücretsiz bir bulut platformdur. Bu araştırmanın amacı GEE üzerinde farklı makine öğrenmesi algoritmaları ile İzmir ili AÖAK haritasını elde etmek ve kullanılan sınıflandırma algoritmaların sonuçlarını karşılaştırmaktır. Araştırmada 2022 yılına ait 10m mekânsal çözünürlüğe sahip Sentinel-2 çok bantlı uydu görüntüleri ile çeşitli UA indeksleri kullanılmıştır. Araştırmada kullanılan geniş ölçekteki AÖAK sınıfları ‘Tarım Alanı’, ‘Orman Alanı’, ‘Beşeri Yüzeyler’, ‘Açık Yüzeyler’ ve ‘Su Yüzeyleri’ şeklinde belirlenmiştir. Çalışmada Sınıflandırma ve Regresyon Ağacı (SRA), Destek Vektör Makinesi (DVM), Rastgele Orman (RO) makine öğrenmesi algoritmaları kullanılmış ve her bir sınıflandırıcının Üretici Doğruluğu (ÜD), Kullanıcı Doğruluğu (KD) ve Genel Doğruluğu (GD) ile Kappa Katsayısı hesaplanmıştır. Sonuç olarak %97,2 GD ve Kappa değeri %95,7 olan RO sınıflandırma algoritması, en yüksek sınıflandırma doğruluğuna sahiptir. %96,1 GD ve %94,9 Kappa değeri ile DVM algoritması ikinci en yüksek sınıflandırma doğruluğuna sahip algoritma olmuştur. SRA algoritmasının GD %93,3, Kappa değeri ise %91.4 olarak hesaplanmıştır. Sonuç olarak RO yöntemi SRA ve DVM yöntemlerine göre daha iyi sonuç verdiği tespit edilmiştir. Diğer yandan sınıflandırma modellerinde özellikle açık yüzeyler ile beşeri yüzeyler ve çıplak tarım alanları arasındaki yansıma örtüşmesi bu sınıfların ayırt edilmesini güçleştirdiği görülmektedir.

Funder

İzmir Bakırçay Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Publisher

Turkish Geograpical Review

Subject

Anesthesiology and Pain Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3