Effect of Silicon on Oat Salinity Tolerance: Analysis of the Epigenetic and Physiological Response of Plants

Author:

Stadnik BarbaraORCID,Tobiasz-Salach Renata,Mazurek MarzenaORCID

Abstract

Environmental conditions are the primary factor determining the growth and yield of plants. As a result of climate change, the negative impact of abiotic factors is intensifying. One of them is salt stress. Soil salinity is one of the major problems in agriculture in the world and affects many cultivar species. The aim of this study was to evaluate the effect of silicon foliar application on the physiological and epigenetic reaction of oats (Avena sativa L.) under salt stress. The pot experiment was carried out in controlled conditions. Oat plants were subject to sodium chloride (NaCl) at a concentration of 200 mM and applied to the soil. Three concentrations of Optysil (200 g∙L−1 SiO2) were used for foliar fertilization. Measurements were made of the relative chlorophyll content in the leaves, the selected chlorophyll fluorescence parameters, and the gas exchange parameters. In this study, methylation-sensitive amplification polymorphisms (MSAP) analysis was used to investigate the effect of Si application during salinity stress on the DNA methylation level in oat plants. The results of this study indicated that the exogenous application of silicon improved the tolerance of the oat plants to salinity. The doses of 0.1% and 0.2% Optysil had the greatest effect on alleviating the impact of salt stress on the oat plants. In this research, the epigenetic as well as the physiological response of plants to the applied experimental factors were analyzed, which is a broad coverage of the research topic on the effects of salinity and silicon on plants.

Funder

Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference120 articles.

1. FAO (2022, November 05). Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL.

2. Oat: Unique among the cereals;Butt;Eur. J. Nutr.,2008

3. Nutritional and functional characterization of different oat (Avena sativa L.) cultivars;Ibrahim;Int. J. Food Prop.,2020

4. Oat is a multifunctional cereal crop;Barcchiya;Innov. Farming,2017

5. Avena sativa (oat), A potential neutraceutical and therapeutic agent: An overview;Sign;Crit. Rev. Food Sci. Nutr.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3