Role of Silicon in Mediating Salt Stress Responses in Arabidopsis Methylation Mutants

Author:

Yeşildirek Yağmur Vecide,Arıkan Burcu,Çelik Haluk,Premkumar Albert,Özden Sibel,Kara Neslihan TurgutORCID

Abstract

Abstract Purpose The growing prevalence of soil salinity presents a significant threat to agriculture production on a global scale. Previous studies on salt stress, shown that silicon (Si) has an alleviating effect on plants exposed to stress. However, the results of the alleviating effect of Si on epigenetic level is not yet understood. In this study, we tried to understand how methylation mechanisms affect the alleviating effect of Si by testing on Arabidopsis epigenetic mutants (met1-7, drm2-2 and ros1-4). Methods The Col-0 and mutant plants were exposed to silicon and NaCl simultaneously and separately during two weeks. After that in order to see the physiological effects of Si on methylation mutants, which is known to be effective in antioxidant pathways of Col-0 plants, osmolyte accumulation and membrane damage were analyzed and to see the effects at the molecular level, the expression profiles of the CSD2, CAT3 and APX1 genes and global methylation changes were analyzed. Results As a general result of the osmolyte accumulation, ion leak, global methylation and gene expression analyzes performed in this study, it was determined that salt stress also had negative effects on Arabidopsis epigenetic mutants. It was concluded that the mitigating effect of Si on NaCl stress was most clearly determined as a result of global DNA methylation analyses. Conclusions It was found that treating Arabidopsis methylation mutants with Si during salt stress could improve the plants’ ability to withstand salt. The results of this study provide information about the alleviating effect of Si based on methylation of separate and co-exposure to Si and NaCl, and also provide an epigenetic perspective to explain the mechanisms of Si improving plant durability under stress conditions.

Funder

Istanbul University

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3