Silicon Foliar Application Mitigates Salt Stress in Sweet Pepper Plants by Enhancing Water Status, Photosynthesis, Antioxidant Enzyme Activity and Fruit Yield

Author:

Abdelaal Khaled A. A.,Mazrou Yasser S.A.,Hafez Yaser M.

Abstract

Silicon is one of the most significant elements in plants under abiotic stress, so we investigated the role of silicon in alleviation of the detrimental effects of salinity at two concentrations (1500 and 3000 ppm sodium chloride) in sweet pepper plants in two seasons (2018 and 2019). Our results indicated that relative water content, concentrations of chlorophyll a and b, nitrogen, phosphorus and potassium contents, number of fruits plant−1, fruit fresh weight plant−1 (g) and fruit yield (ton hectare−1) significantly decreased in salt-stressed sweet pepper plants as compared to control plants. In addition, electrolyte leakage, proline, lipid peroxidation, superoxide (O2−) and hydrogen peroxide (H2O2) levels, soluble sugars, sucrose, and starch content as well as sodium content significantly increased under salinity conditions. Conversely, foliar application of silicon led to improvements in concentrations of chlorophyll a and b and mineral nutrients, water status, and fruit yield of sweet pepper plants. Furthermore, lipid peroxidation, electrolyte leakage, levels of superoxide, and hydrogen peroxide were decreased with silicon treatments.

Funder

King Khalid University

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference69 articles.

1. Effect of Salt Stress on Growth and Na, K Contents of Pepper (Capsicum annuum L.) In Germination and Seedling Stages;Yilmaz;Pak. J. Biol. Sci.,2004

2. Salinity: A Major Agricultural Problem—Causes, Impacts on Crop Productivity and Management Strategies;Majeed,2019

3. Treatment of Sweet Pepper with Stress Tolerance-Inducing Compounds Alleviates Salinity Stress Oxidative Damage by Mediating the Physio-Biochemical Activities and Antioxidant Systems

4. Cucumber grafting onto pumpkin can represent an interesting tool to minimize salinity stress. Physiological and anatomical studies;Helaly;Middle East J. Agric. Res.,2017

5. Plant proteome changes under abiotic stress — Contribution of proteomics studies to understanding plant stress response

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3