Determination Method of Core Parameters for the Mechanical Classification Simulation of Thin-Skinned Walnuts

Author:

Jiang Yang,Tang Yurong,Li Wen,Zeng Yong,Li Xiaolong,Liu YangORCID,Zhang Hong

Abstract

Simulation can be used to visualize the mechanical classification of walnuts. It can collect microscopic information about walnuts in the classification roller and guide its optimization design. In this process, simulation parameters are essential factors that ensure the effectiveness of the simulation. In this study, the crucial parameters of thin-skinned walnut particles in classification simulation were determined by combining the discrete element method (DEM) and physical tests. Firstly, the moisture content, shear modulus, stacking angle, and some contact parameters in the shell and kernel were obtained by drying test, compression test, cylinder lifting test, and physical test of contact parameters, respectively. A walnut model was constructed using reverse modeling technology. Then, the ranges of the rest contact parameters were determined using simulation inversion based on the Generic EDEM Material Model database. Second, the parameters significantly influencing the stacking angle were screened via the Plackett–Burman test using contact parameters as factors and stacking angle as the index. The results revealed that the walnut–walnut static friction coefficient, walnut–walnut rolling friction coefficient, and walnut–steel plate static friction coefficient significantly affect the stacking angle. The steepest ascent experiment produced the optimal value intervals of crucial parameters. Besides, a quadratic regression model of important parameters was built using the Box–Behnken test to achieve the optimal parameter combination. The stacking and classification experiments verified that the stacking angle and morphology are mostly similar under calibration parameters without any considerable differences. The relative error was only 0.068%. Notably, the relative error of the average staying time of walnut in the classification roller was 0.671%, and the dimensionless distribution curves of stay time were consistent. This study provides technological support to the simulation analysis of walnut classification and recommends novel methods and references to determine the parameters of other shell materials.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference37 articles.

1. Metabolomics reveals significant variations in metabolites and correlations regarding the maturation of walnuts (Juglans regia L.);Rao;Biol. Open,2016

2. Zhang, H., Liu, H.L., Zeng, Y., Tang, Y.R., Zhang, Z.G., and Che, J. (2022). Design and Performance Evaluation of a Multi-Point Extrusion Walnut Cracking Device. Agriculture, 12.

3. Walnut fruit processing equipment: Academic insights and perspectives;Liu;Food Eng. Rev.,2021

4. Design and Experiment of Cam Rocker Bidirectional Extrusion Walnut Shell Breaking Device;Shi;Trans. Chin. Soc. Agric. Mach.,2022

5. Experiment on winnowing mechanism and winnowing performance of hickory material;Cao;Trans. Chin. Soc. Agric. Mach.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3