Design and Performance Evaluation of a Multi-Point Extrusion Walnut Cracking Device

Author:

Zhang Hong,Liu Hualong,Zeng Yong,Tang Yurong,Zhang Zhaoguo,Che Ji

Abstract

The practical problems of existing methods of walnut cracking under compression loading, including incomplete walnut-shell crushing, broken walnut kernels, and so on, are widespread in walnut processing and are constraints that hinder mechanized walnut processing. Therefore, attempts have been made to design and optimize a multi-point extrusion walnut cracking device. For this, walnuts were fed manually into a cracking unit through the hopper. The tangential force of the grading roller graded the walnuts and dropped them into the gap between the rotating cracking roller and extrusion plate, causing them to crack. The developed machine was tested and the parameters were optimized using a central composite design (CCD). The objective functions involving the cracking angle (CA: 0.17, 0.27, 0.52, 0.76, 0.86°) and roller speed (RS: 63, 75, 105, 135, 147 r/min) were calculated. The shell cracking rate (SCR), whole kernel rate (WKR), and specific energy consumption (Es) regression models were established using the quadratic regression orthogonal combination test and the parameters were optimized using MATLAB software. The results showed that the most significant factors for the RS were the linear terms of the SCR and WKR, whereas for the CA the most significant factor was the linear term of the Es. The interaction term of the two factors had a significant effect on the three indicators. The optimal parameter combination was determined to be 0.47° for the CA and 108 r/min for the RS. On this basis, the adaptability test showed that the cracking device had a better cracking effect on walnuts with a gap between the walnut shell and kernel greater than 1.6 mm and a shell thickness less than 1.2 mm. The results have practical significance for the design of walnut cracking devices.

Funder

Hong Zhang and Yong Zeng

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3