Application of Artificial Neural Networks for Multi-Criteria Yield Prediction of Winter Rapeseed

Author:

Niedbała GniewkoORCID

Abstract

The aim of the work was to produce three independent, multi-criteria models for the prediction of winter rapeseed yield. Each of the models was constructed in such a way that the yield prediction can be carried out on three dates: April 15th, May 31st, and June 30th. For model building, artificial neural networks with multi-layer perceptron (MLP) topology were used, on the basis of meteorological data (temperature and precipitation) and information about mineral fertilisation. The data were collected from the years, 2008–2015, from 328 production fields located in Greater Poland, Poland. An assessment of the quality of forecasts produced based on neural models was verified by determination of forecast errors using RAE (relative approximation error), RMS (root mean square error), MAE (mean absolute error) error indicators, and MAPE (mean absolute percentage error). An important feature of the produced prediction models is the ability to realize the forecast in the current agrotechnical year on the basis of the current weather and fertiliser information. The lowest MAPE error values were obtained for the neural model WR15_04 (April 15th) based on the MLP network with structure 15:15-18-11-1:1, which reached 7.51%. Other models reached MAPE errors of 7.85% for model WR31_05 (May 31st) and 8.12% for model WR30_06 (June 30th). The performed sensitivity analysis gave information about the factors that have the greatest impact on winter rapeseed yields. The highest rank of 1 was obtained by two networks for the same independent variable in the form of the sum of precipitation within a period from September 1st to December 31st of the previous year. However, in model WR15_04, the highest rank obtained a feature in the form of a sum of molybdenum fertilization in the current year (MO_CY). The models of winter rapeseed yield produced in the work will be the basis for the construction of new forecasting tools, which may be an important element of precision agriculture and the main element of decision support systems.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3