Affiliation:
1. Department of Mathematics, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
Abstract
This study addresses an adaptive neural funnel fault-tolerant control problem for a class of strict-feedback nonlinear systems with actuator faults and input dead zone. To guarantee the boundedness of the tracking error, a modified transformation for funnel error is devised and incorporated into the control design process. To manage unknown nonlinear functions, radial basis function neural networks (RBFNN) are employed in designing an adaptive neural funnel fault-tolerant controller through the backstepping technique. The proposed controller guarantees the output tracking error stays within a predefined funnel, and all signals in the closed-loop system are semiglobally uniformly ultimately bounded (SGUUB). Finally, simulations of a rigid robot manipulator system and an inverted pendulum system are conducted to validate the practicality and effectiveness of the proposed control method.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献