Author:
Norouzi Mohamad Amin,Ahangar Leila,Payghamzadeh Kamal,Sabouri Hossein,Sajadi Sayed Javad
Publisher
Springer Science and Business Media LLC
Reference52 articles.
1. Aasim A, Katırcı R, Akgur O, Yildirim B, Mustafa Z, Azhar Nadeem M, Shahzad Baloch F, Karakoy T, Yılmaz G (2022) Machine learning (ML) algorithms and artificial neural network for optimizing in vitro germination and growth indices of industrial hemp (Cannabis sativa L.). Ind Crop Prods 181:114801
2. Araghinejad S, Hosseini-Moghari SM, Eslamian S (2017) Application of data-driven models in drought forecasting. In: Eslamian S (ed) Handbook of drought and water scarcity. CRC Press, New York, pp 423–440
3. Badirdast H, Salehi-Lisar SY, Sabouri H, Movafeghi A, Gholamalalipour Alamdari E (2018) Identification of informative alleles controlling rice traits under flooding and drought stress conditions. Plant Genet Res 5:39–54
4. Badirdast H, Salehi-Lisar SY, Movafeghi A, Gholamalalipour Alamdari E (2021) Identification of ISSR, IRAP and iPBS markers containing information on rice characteristics under two conditions of flooding and drought stress. Cell Mol Res 34:34–44
5. Campbell C, Ying Y (2011) Learning with support vector machines. Springer Nature Switzerland AG 2011, Springer Cham. https://doi.org/10.1007/978-3-031-01552-6